
Cua-Bench: Technical Report

Cua AI Team

� https://cuabench.ai/

Abstract

Deploying autonomous computer-use agents (CUAs) requires robust training and evalu-
ation across diverse and realistic computing environments. Existing benchmarks largely
rely on static virtual machines with fixed applications and narrowly defined tasks, failing
to capture the variability in operating systems, application states, GUI layouts, and desk-
top contexts encountered in real-world deployment. We introduce Cua-Bench: a flexible
and scalable framework for constructing verifiable, dynamic computer-use environments
that support comprehensive CUA training and evaluation. Cua-Bench provides CLI
workflows for GUI/UI data generation, agentic trajectory generation, verifiable task
generation and evaluations. Cua-Bench not only provides simulations of real applica-
tions and computing environments, but it also enables diverse data creation and agentic
testing across heterogeneous GUI and system configurations. The framework exposes a
Python API for defining task setup, evaluation, and oracle solutions and evaluation atop
web-framework-agnostic desktop GUI applications, making it easy for researchers and
LLMs to develop and extend new tasks across UI/GUI data generation, trajectory syn-
thesis, and simulation use cases. This modularity allows developers to easily integrate
preferred tooling to build data generators, tasks, and simulators, making Cua-Bench a
practical foundation for realistic, large-scale CUA benchmarking and development.

Figure 1: Examples of data generated by Cua-Bench

1

https://cuabench.ai/

1 Introduction

Recent advances in foundation models have given rise to a new class of autonomous agents capable
of directly interacting with desktop computing environments: clicking buttons, typing text, navigating
applications, and completing complex multi-step workflows.

However, across the diverse computing environments agents encounter in testing and deployment, they
face significant variation in across multiple dimensions. To name just a few:

• Operating systems: Windows 10 or 11, macOS versions from Mountain Lion to Sequoia, various
Linux distributions with different desktop environments and distros (GNOME, XFCE, KDE).

• Desktop states: Different sets of installed applications, varying favorited and pinned apps,
diverse wallpapers and themes.

• Window layouts: Multiple open windows at various positions, overlapping applications, clut-
tered desktops.

• Application configurations: Light/dark themes, different screen resolutions, varying font sizes.

Current evaluation frameworks, however, largely rely on static virtual machine snapshots with fixed
configurations. Benchmarks like OSWorld and Windows Agent Arena provide valuable evaluation
infrastructure but suffer from critical limitations such as:

• Static VMs: Tasks are baked into bench-server components embedded in VM images, requiring
up to 20 minutes to load.

• Fixed application sets: VMs come preinstalled with a predetermined set of applications, not
reflecting real-world diversity.

• Limited task definitions: Tasks are defined via JSON with constrained setup and evaluator
command vocabularies specific to each benchmark.

• Slow iteration: Updating tasks requires rebuilding entire VM images: a slow process.

1.1 Capabilities & Features

Cua-Bench provides a scalable and customizable framework to help with agentic data, testing, evaluation,
and more. To list just a few features, it allows users to:

1. Generate thousands of configurable desktop variations across macOS, Windows, and Linux,
including randomized installed applications, favorited apps, and window layouts.

2. Define tasks with verifiable rewards through a declarative Python API supporting custom JSON
scenarios for configurable application variations.

3. Deploy lightweight “webtop” environments—HTML/CSS-based desktop replicas—requiring
only a single CPU without virtualization infrastructure.

4. Generate ground-truth multi-step trajectory data through reference solutions, inspired by Terminal-
Bench’s oracle-based approach. We also introduce a novel HTML-based snapshot format that
enables offline rendering, domain-specific augmentation, and cross-OS compatibility.

Cua-Bench supersedes prior frameworks by decoupling tasks and data generation from VM images
(though we also include this option if necessary), enabling rapid iteration without rebuilding slow disk
images, and providing an agnostic Python API for environment and window control.

macOS Linux Windows Android iOS VM Webtop

UI & GUI Data Generation ✓ ✓ ✓ ✓ ✓ ✓ ✓
Trajectory Data Generation ✓ ✓ ✓ ✓ ✓ ✓ ✓
Agentic Benchmarks ✓ ✓ ✓ ✓ ✓ ✓ ✓
Shell Apps & Simulators ✓ ✓ ✓ ✓ ✓ ✓ ✓
Real Apps ✓ ✓ ✓ ✓ ✓ ✓ ×

Table 1: Overview of features & capabilities supported within Cua-bench across different environments
and platforms. Cua-Bench runs macOS, Linux, Windows, Android, and iOS in VM or web-based desktop
environments, offering a Python API to deploy HTML-based GUI apps across both, while native binary
applications are supported in VM environments.

2

2 Scalable Data Generation & Diversity

2.1 GUI Data & HTML Snapshots

Cua-Bench is capable of generating realistic and diverse GUI data at scale—customizable and config-
urable to generate data across multiple dimensions such as different programs and applications, window
placements and screen coverage, different graphic styles, colors, and contrasts, different platforms/de-
vices, and much more (Figure 1). Beyond raw screenshots, Cua-Bench captures full HTML snapshots of
each window along with bounding box coordinates, accessibility labels, and CSS styles, enabling offline
rendering and cross-OS replay of captured states (Figure 2).

Figure 2: Examples of Cua-Bench GUI data, containing high-quality UI/GUI screenshots (top row) and
meta-data such as bounding boxes and accessibility labels around UI elements (e.g., bottom row), etc.

2.1.1 Variety Across Platforms

In terms of cross-OS and cross-platform variety, Cua-Bench is able to generate data at scale across multiple
platforms and device types, with each environment optionally seeded with hundreds of real-world
applications and icons to simulate natural desktop clutter. Beyond conventional desktop computing
environments (e.g., Windows, Mac, Linux), Cua-Bench is also capable of generating data of GUI/UI
interfaces from popular mobile environments such as iOS and Android (e.g., Figure 4, Figure 5).

Figure 3: Examples of different MacOS interfaces generated via Cua-Bench with simulated clutter

2.1.2 Variety Across Time

While many GUI, UI, screenshot, and other similar datasets for grounding CUAs in visual computing
environments exist with varying degrees of coverage across different computing and operating environ-
ments, nearly all of them focus on modern interfaces and modern graphic styles. This, however, can
introduce several problems with data representation, potentially biasing and over-fitting agents towards
certain GUI/visual environments, resulting in a lack of robustness across diverse settings.

To ensure that agents are universally capable of understanding and handling any type of different
graphic/visual environments and styles, Cua-Bench is capable of generating a data from a variety of
different OS versions from old to new (e.g., Figure 6) from older to newer versions of Windows OS and
others as well as different distributions (e.g., Linux) 1.

1Additional OS, environments, and platforms are continuously being incorporated into Cua-Bench to ensure

3

Figure 4: Examples of generated Android data Figure 5: Examples of generated iOS data

Figure 6: Examples of generating GUI/UI styles across new and old OS environments alike with Cua-
Bench (Top: Windows 98, Bottom: Windows 10).

2.1.3 Variety Across Resolutions

Similarly, Cua-Bench is capable of generating GUI data of differing resolutions, allowing for a wide
range of detail levels for agents to use for training and testing on rich GUI elements in both high and low
resolutions alike (Figure 8, Figure 7).

Figure 7: Examples of higher resolution (3440x1440) images generated by Cua-Bench

2.2 Agentic Trajectory Data & Task Generation

Taking advantage of the HTML-based GUI snapshots, Cua-Bench exposes a Playwright-like Python API
that tasks can use to define oracle solutions—inspired by Terminal-Bench’s solution script approach. This

diverse representation across time and platforms/environments.

4

Figure 8: Examples of lower resolution (640x480) images generated by Cua-Bench

allows Cua-Bench to generate agentic trajectories (i.e., “traces”) by executing the oracle solution and
mapping the high-level Playwright-like code to step-by-step snapshots and low-level keyboard/mouse
actions, making it easy to generate many-step ground-truth trajectories for training computer-use agents
to navigate complex desktop environments.

2.2.1 Oracle Solutions for Trajectory Generation

Each task in Cua-Bench can define a reference solution using a @cb.solve task decorator, which program-
matically completes the task using Playwright-style selectors and actionability logic. When executed,
Cua-Bench records each action alongside the environment state—capturing HTML snapshots, screen-
shots, and input events—to produce complete multi-step trajectories suitable for behavioral cloning or
supervised learning (Figure 9, Figure 10).

Oracle Solution (.py)
(pyautogui-like API)

(playwright-like API)

Task.zip

Long Horizon Desktop Trajectory

Trajectory Dataset
mouse_down(125, 12)

mouse_move(+5, +0)

snapshot(…)

Figure 9: Example of generating a multi-step long-horizon task and collecting its trajectory data in
Cua-Bench

2.2.2 Task Generation & Development

Cua-Bench’s simple-to-use Python API (both web framework agnostic and supporting Playwright syntax
on desktop environments) makes generating verifiable and solvable tasks at scale easy for both humans
and modern LLMs acting as task authors. Users can define tasks via four decorators (@tasks config,
@setup task, @evaluate task, @solve task), with JSON-based scenario injection enabling thousands of
task variations and unique trajectories from a single template (Figure 11, Figure 12).

5

Figure 10: Examples of trajectory traces from Cua-Bench within a Linux VM environment, containing
low-level actions and full HTML snapshots of each window

1. create a task

$ cb generate-task
“discord clone”

Development Workflow
2. try the task yourself:

$ cb interact
discord_env

3.1 perform evals

$ cb eval discord_env
-m “opus-4.5”

3.2 generate data

$ cb dump-solution
discord_env

or

make
changes
& iterate

discord_env

gui/

main.py

Figure 11: Illustration of development workflow within Cua-Bench to generate tasks, perform evals, and
collect trajectory data

Figure 12: Overview of Cua-Bench’s task and environment architecture

3 Simulators & Environments

Beyond just data generation, Cua-Bench offers self-contained, full-bodied simulators and environments
for agents to interact with and operate within.

3.1 CUA Benchmark Adapters

The flexibility of Cua-Bench’s Python-based task definition API allows existing computer-use benchmarks
to also be wrapped as adapters, delegating to their original setup and evaluation code while gaining
access to Cua-Bench’s variation and recording capabilities. Currently included adapters support OSWorld
(Xie et al., 2024), Windows Agent Arena (Bonatti et al., 2025), and MiniWoB++(Liu et al., 2018) though
future development efforts will include others as well.

3.2 Shell Applications & Websites

In addition to widely-used CUA benchmarks like Windows Agent Arena and OSWorld, Cua-Bench also
provides simulated shell applications with realistic GUI elements in full-fledged environments that agents

6

can interact with (e.g., Figure 13), allowing agents to easily explore in realistic settings. Cua-Bench also
enables data collection from agents’ interactions with these applications, allowing the user to generate
agent trajectories for later use.

Figure 13: Shell applications within Cua-Bench have full functionality, serving as a robust simulator/en-
vironment for an agent interaction and testing.

Cua-Bench also allows for extensive customization of these simulated shell applications, allowing users
to customize not just the appearance (e.g., style, color, etc.) and placement of these applications but
also the content of these applications as well (Figure 14). As demonstrated by Ullrich et al. (2025), such
variation is essential for measuring and improving agent reliability, as task success rates can differ by
over 10× depending on theme, font, or language settings.

Spotify clone data
{
 liked_songs: [
 “Calling U Back”…

Per-app
Configuration

Slack clone data
{
 workspaces: [
 “CUA Workspace”…

WhatsApp clone data
{
 contacts: [
 “John Smith”…

Figure 14: Each application itself is flexible and configurable, allowing for customizing of the types of
content, UI elements, and more within the app.

4 Conclusion

The promise of autonomous computer-use agents hinges on their ability to operate reliably across the
messy, heterogeneous environments of real-world computing. We have introduced Cua-Bench, an
open framework designed to help researchers easily develop controlled benchmarks that are close to
deployment reality. Cua-Bench enables researchers and practitioners to define verifiable tasks through a
simple Python API, generate thousands of unique desktop configurations, and produce ground-truth
trajectories via oracle solutions that simultaneously verify task solvability, removing the development
overhead of building virtual machine images and managing virtualization infrastructure. By capturing
full HTML snapshots alongside screenshots and input events, Cua-Bench supports offline analysis,
augmentation, and cross-platform compatibility that existing OS VM benchmarks cannot provide.

Limitations and future work. Cua-Bench’s Webtop environments, while visually realistic and fully
interactive, represent simplified versions of complex software and may not capture all edge cases present
in real applications. Current task coverage focuses on common desktop workflows; expanding to
specialized domains (e.g., creative software, enterprise tools) remains ongoing work. Future directions
include integrating reinforcement learning training loops directly into the framework, supporting large-
scale human-in-the-loop annotation pipelines, and establishing community-driven task repositories to
accelerate progress toward truly general-purpose computer-use agents.

7

References
Rogerio Bonatti, Dan Zhao, Francesco Bonacci, Dillon Dupont, Sara Abdali, Yinheng Li, Yadong Lu, Justin

Wagle, Kazuhito Koishida, Arthur Bucker, Lawrence Keunho Jang, and Zheng Hui. Windows agent
arena: Evaluating multi-modal OS agents at scale. In Aarti Singh, Maryam Fazel, Daniel Hsu, Simon
Lacoste-Julien, Felix Berkenkamp, Tegan Maharaj, Kiri Wagstaff, and Jerry Zhu (eds.), Proceedings of the
42nd International Conference on Machine Learning, volume 267 of Proceedings of Machine Learning Research,
pp. 4874–4910. PMLR, July 2025. URL https://proceedings.mlr.press/v267/bonatti25a.html.

EZ Liu et al. Reinforcement learning on web interfaces using workflow-guided exploration. In In-
ternational Conference on Learning Representations (ICLR) Workshops, 2018. Includes the MiniWoB++
benchmark suite.

Karen Ullrich, Jingtong Su, Claudia Shi, Arjun Subramonian, Amir Bar, Ivan Evtimov, Nikolaos Tsilivis,
Randall Balestriero, Julia Kempe, and Mark Ibrahim. Openapps: Simulating environment variations to
measure ui-agent reliability, 2025. URL https://arxiv.org/abs/2511.20766.

Tianbao Xie, Danyang Zhang, Jixuan Chen, Xiaochuan Li, Siheng Zhao, Ruisheng Cao, Toh Jing Hua,
Zhoujun Cheng, Dongchan Shin, Fangyu Lei, et al. Osworld: Benchmarking multimodal agents for
open-ended tasks in real computer environments. In Advances in Neural Information Processing Systems
37 (Datasets and Benchmarks Track), 2024. doi: 10.52202/079017-1650. NeurIPS 2024.

8

https://proceedings.mlr.press/v267/bonatti25a.html
https://arxiv.org/abs/2511.20766

